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ABSTRACT 

In this study, a penalty minimization job-shop scheduling model under uncertainty is developed. The model 

considers a job-shop of J jobs and M machines. Each task has a random duration with a specific probability distribution. 

Each job has a specific due date and the bulk penalty if it is not delivered on time. An additional penalty must be paid for 

each time unit of delay.If any job is accomplished early,  it will cost holding expenses. The problem is to determine the 

optimal start times of each task to minimize the expected penalties. A numerical problem has been solved to 

minimize both the makespan and total penalties separately and a comparison between results was done. 

Analysis of the results prescribed that optimizing penalties is important to be taken into consideration besides 

considering the uncertainty in JSSP. 
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INTRODUCTION  

Scheduling plays an essential role in production systems. This paper considers job-shop scheduling problem 

(JSSP) where it is the most general and practical machine environment in which several machines exist, and each job has 

its own pre-determined route to follow. A job shop is defined as any system that processes several tasks for the number of 

jobs on several machines. Reaching the optimal solution is not an easy task. Till now, no known algorithms guarantee to 

give an optimal solution and run in polynomial time, consequently optimizing methods such as branch and bound, dynamic 

programming and mathematical models may be used for small size problems. So, efforts are diverted to heuristic and 

metaheuristic techniques and algorithms opting to reach near-optimal solutions. 

Most of the researchers aimed at optimizing time-based objectives rather than the cost-based objectives. 

Moreover, they tackled the problem with the assumption of constant job operation times while others consider the 

randomness of time. Metaheuristic approaches such as genetic algorithm, simulating annealing SA, bee colony BC, ant 

colony AC, particle swarm optimization PSO, cuckoo nest search CS and migrating bird’s optimization MBO and others 

are presented as solution approaches to JSSP. Banu Calis et al. [1] summarized the well-known objective functions of JSSP 

and most of the AI used solution strategies to solve the problem. 

International Journal of Business and 
General Management (IJBGM) 
ISSN (P): 2319-2267; ISSN (E): 2319-2275 
Vol. 8, Issue 3, Apr - May2019; 23-38 
© IASET 



24                                                                                                                                                   M. S. Al-Ashhab, Taiser Attia &  Amr Shaaban 

 
Impact Factor (JCC): 5.9876                                                                                                                                                                        NAAS Rating 3.51 

 

S.Singh et al. [2] proposed a hybrid algorithm using cuckoo search optimization CSO with enhancement scheme 

to solve the problem with an objective of minimizing makespan. 

Bing Wang et al. [3], established a hybrid local search robust optimization model combining the tabu technique 

and the simulated-annealing search. They considered uncertain processing times with makespan as a performance criterion. 

They described the uncertain processing times by discrete scenarios. The set of bad scenarios hedges against the 

uncertainty of achieving substandard performances among these bad scenarios. 

The mission of the scheduling process is to optimally allocate the suitable machine to perform the required jobs 

over a period to achieve the business goals. Therefore, many efforts have been performed to solve most optimal JSSP, as 

most of the researches aimed at minimizing the maximum completion time. Number of methods have been developed to 

solve JSSP; Tabu-Search[4], Simulated Annealing[5], Genetic Algorithms[6], Particle Swarm Optimization [7, 8], Ant 

Colony Optimization [9, 10], differential evolution algorithm [11], Memetic Algorithm [12], Mathematical Programming 

[13, 14] and Goal Programming [15].Some researchers managed the problem under uncertainty analysis. RuhulSarker et al. 

[16] considered the disruption problem of receiving different job orders from customers and facing frequent machine 

breakdowns. 

Tavakkoli-Moghaddam et al. [17] considered JSS with random operations, where the time difference between the 

delivery and completion of jobs as well as related operational or idle cost of machines that must be minimized. Some 

authors have developed exact and heuristic algorithms for JSSP with the makespan or mean flow time criterion subject to 

random processing times [18-20]. 

In recent literature, two new criteria have been brought to the attention of researchers for their consideration: 

robustness and stability [21].Z. Lu et al. [22] addressed the problem of finding a robust and stable schedule for a single 

machine with availability constraints. 

Chan et al. [23, 24]considered in their model, the minimization of late cost, inventory cost, penalty cost, setup cost 

besides makespan. While Huang [25] considered minimizing the material processing cost, setup time cost and inventory 

cost as their objective function.Varthanan et al. [26] developed an efficient particle swarm algorithm to solve both 

deterministic and stochastic problems and minimizing the total cost. D. Golenko et al. [27] developed an optimization 

model to solve JSSP with random durations and various cost penalties and expenses. 

From the aforementioned, most of the developed heuristics in JSSP targeted the problem of time to minimize 

makespan. Less work was done to consider the role of cost on determining such schedules. Moreover, most of the 

researches believe job processing to be deterministic. Some of the researches consider uncertain processing times. Job 

operations may have a random duration with a probability distribution.  

This paper introduces a penalty minimization JSS model under uncertainty. This model is developed to minimize 

the cost of untimed job penalty and the non-utilized capacity cost. The model considers the job times to be random with a 

certain probability distribution. The aim is to determine the optimal start times of each task to minimize the expected total 

penalties. The incurred costs in this model are the delay penalties expressing the tardiness, storage cost representing the 

earliness, and the non-utilized capacity cost. 
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Problem Description and Assumptions 

Besides the growing trend towards the application of GA to JSSP, researchers are looking for using simple 

software to aid them to obtain good solutions in a low time. The Microsoft Excel spreadsheet and an add-in to provide the 

GA called @RiskOptimizer are used in the domain of scheduling problems. 

The authors decided to get benefits from this advantage of using @RiskOptimizer. This research uses a Microsoft 

Excel spreadsheet-based commercial genetic algorithm Evolver with solver @RiskOptimizer to build the JSS model.  

The Following Assumptions are Considered in the Model 

• The processing times are uncertain; 

• Each job has its own due date; 

• Each job will visit the same machine not more than one time; 

• All jobs and machines are ready at time zero; 

• Each machine can process only one job at a time; 

• Recirculation is not allowed; 

Notation and Model Formulation 

Sets 

J: Set of jobs 

M: Set of machines 

Parameters 

Pji: Processing time for job j on m/c i 

PMji: The mean value of the processing time for job j on m/c i 

PSji: The standard deviation of the processing time for job j on m/c i 

Dj: Due date of job j, j =1, 2, …, J 

SCj: The storage expenses of job j per unit time 

DCj: The penalty of job j delay per unit time 

PCj: The penalty of job j delay 

MIPi: The penalty of machine i idling per unit time 

SEQ: Processing sequence array 

NUMT: Number of machines (tasks) for each job 

NUMJ: Number of jobs per machine J 

DISJ: Disjunction array 
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Decision Variables 

Sji: Starting time of job j on machine i, 

Fji: Finishing time of job j on machine i, 

Cj: Completion time of job j, 

Ej: Earliness of job j = (Dj - Cj) if Dj>Cj, and 0 otherwise, 

Tj: Tardiness of job j = (Cj - Dj) if Cj>Dj, and 0 otherwise, 

																MITi:	Idle	time	of	machine	i = 	MAX�Fji� −�Pji
�∈�

 

SPj: Single penaltyfornotaccomplishingjobjontime(tobepaidonce) 

TPj: Tardiness penalty of job j. 

EPj: Earliness penalty of job j. 

TJj: Binary variable = 1 if Tj> 0, and 0 otherwise, 

Objective Functions 

Total penalty = Non-utilised capacity penalty + Delay penalty (Tardiness) + Single payment penalty (Tardiness) + 

Storage penalty (Earliness). 

The objective of total penalties is given in Equation 1. 

Total	Penalty = 	∑ �MIT! ∗ MIP!�!∈# + ∑ �T% ∗ TP%� + ∑ �TJ% ∗ SP%�%∈(%∈( + ∑ �E� ∗ W� ∗ EP��%∈(   (1) 

Constraints 

+S,- − S,�. ≥ P,� −M	Y,-�, ∀i, j	 ∈ N, ∀h ∈ M       (2) 

+S,� − S,-. ≥ P,- −M	�1 − Y,-��, ∀i, j	 ∈ N, ∀h ∈ M       (3) 

Conjunction Constraints 

∑ +S567��,-�,� + P567��,8�,�.-∈9 ≥ ∑ S567��,-:;�,�-∈9 , ∀	j	 ∈ N, ∀i ∈ M − 1     (4) 

Computational Results and Analysis 

In this section, the results of applying the proposed model are introduced and analyzed. The model has been 

solved using @RiskOptimizer solver. 

The model accuracy and capability are verified through solving a numerical problem. The processing sequences 

of three jobs on four machines are shown in table 1. The duration matrix and the due date of each job are shown in table 2 

and 3 respectively. 
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Table 1: Job Sequence 

J1 3 2 4 1 
J2 3 2 1 4 
J3 1 3 4 2 

 
Table 2: Duration Matrix 

M/J  J1 J2 J3 
M1 80 100 50 
M2 40 90 25 
M3 60 50 80 
M4 60 50 50 

 
Table 3: Due Date 

Job 1 2 3 

Due Date 300 350 320 

 
The optimization process starts with an accurate problem modelling. For any given set of decision values, called 

adjustable cell values, the model evaluates an objective function, which required to be optimized. @RiskOptimizer 

searches for the solution, the objective function provides feedback, telling how good or bad solution is. 

@RiskOptimizercontinues to search for better solutions until no considerable improvements can be obtained in a 

predefined number of trials. 

The problem is solved twice with the objective of minimizing the total penalty. In the first, considering 

deterministic duration processing times after that the durations are assumed to follow normal distribution N (µ, σ) with 

mean µ and standard deviation σ. The ratio between the standard deviation and mean is known as variability.  

Case 1: Output of the Model with Deterministic Duration 

Table 4 to Table 7 illustrate the results of the model with deterministic processing durations. The unit idle 

penalties are assumed to be 50, 5, 5 and 5 $/time unit for each machine respectively. The resulted in total penalty due to the 

shortage, delay and a single penalty is equal to 6000 $ while the penalties due to idle time or non-utilized capacity of 

machines are 6275$. Consequently, the objective function of the total penalty is equal to their sums 12275$. 

Table 4: The Start and Finish Times of Each Operation 

OperationNo. 1 2 3 4 5 6 7 8 9 10 11 12 
Job ID 1 1 1 1 2 2 2 2 3 3 3 3 
Machine Required 3 2 4 1 3 2 1 4 1 3 4 2 
Duration Time 60 40 60 80 50 90 100 50 50 80 50 25 
Start Time 50 140 180 240 0 50 140 300 19 110 245 295 
Finish Time 110 180 240 320 50 140 240 350 69 190 295 320 

 
Table 5: Due Date, Finish, Earliness and Tardiness 

 
J1 J2 J3 

Due Date 300 350 320 
Finish Time 320 350 320 
Earliness 0 0 0 
Tardiness 20 0 0 
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Table 6: Earliness, Tardiness and Single Payment 

Penalty
Earliness Penalty per 
Earliness Penalty (Storage 
Tardiness Penalty per 
Tardiness Penalty (Delay 
Single Penalty for E
No. of Delays 
Single Penalties 

 

Duration Matrix 
M/J J1 J2 J3 
M1 80 100 50 
M2 40 90 25 
M3 60 50 80 
M4 60 50 50 

 
Case 2: Output of the Model with Stochastic Duration

This case studies the effect of changing the duration of 

penalty. As mentioned before, the duration of operations is assumed to follow the normal distribution. Figures (1

the duration distribution of the operations with (mean time, Standard deviation)

and (100,10). It is noticed that the variability, in this case, is equal to 10%.

Figure 1: Duration Distribution of Operation No. 2
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Table 6: Earliness, Tardiness and Single Payment Penalties

Penalty J1 J2 J3 J4 
Earliness Penalty per Unit of Time  2 2 1 0 
Earliness Penalty (Storage Cost) 0 0 0 0 
Tardiness Penalty per Unit of Time  200 200 120 0 
Tardiness Penalty (Delay Cost) 4000 0 0 0 

Each Delay 2000 2000 1200 0 
1 0 0 0 

2000 0 0 0 
Summation 

Table 7: Idle Time Penalty 

Sum 
Max. Finishing 

Time 
Idle Time 

 J4 J5 
 

  
230 320 90 

 
  

155 320 165 
 

  
190 190 0 

 
  

160 350 190 
Summation 

Case 2: Output of the Model with Stochastic Duration 

This case studies the effect of changing the duration of operations into robust on both the makespan and total 

penalty. As mentioned before, the duration of operations is assumed to follow the normal distribution. Figures (1

the duration distribution of the operations with (mean time, Standard deviation) of (40, 4), (50, 5), (60, 6), (80, 8), (90, 9) 

and (100,10). It is noticed that the variability, in this case, is equal to 10%. 

Figure 1: Duration Distribution of Operation No. 2 
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Penalties 

J5 ∑ 
0 

 
0 0 
0 

 
0 4000 
0 

 
0 

 
0 2000 

6000 

Unit Idle 
Penalty 

Total 
Penalty 

50 4500 
5 825 
5 0 
5 950 

6275 

operations into robust on both the makespan and total 

penalty. As mentioned before, the duration of operations is assumed to follow the normal distribution. Figures (1-6) show 

of (40, 4), (50, 5), (60, 6), (80, 8), (90, 9) 
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Figure 2: Duration Distribution of Operation No. 5

Figure 3: Duration

Figure 4: Duration Distribution of Operation No. 4
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Figure 2: Duration Distribution of Operation No. 5 

Figure 3: Duration Distribution of Operation No. 1 

Figure 4: Duration Distribution of Operation No. 4 
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Figure 6: Duration Distribution of Operation No. 7

Figure 7 shows the resulting makespan optimal distribution due t

inputs ranked by the effect on the output. It is clear from 

makespan. This is more clearly as well from figures (9

contribution to variance. It is noticed that Operation No. 8 comes on the second
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Figure 5: Duration Distribution of Operation No. 6 

Figure 6: Duration Distribution of Operation No. 7 

Figure 7 shows the resulting makespan optimal distribution due to 10% variability. While Figure 8 shows the 

inputs ranked by the effect on the output. It is clear from Figure 7 that Operation no. 4 has the greatest effect on the 

makespan. This is more clearly as well from figures (9-11). Operation no.4 has a regression coefficient of 0.7 and 59.115% 

contribution to variance. It is noticed that Operation No. 8 comes on the second rank to Operation no. 4
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o 10% variability. While Figure 8 shows the 

that Operation no. 4 has the greatest effect on the 

11). Operation no.4 has a regression coefficient of 0.7 and 59.115% 

rank to Operation no. 4 
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Figure 7: Make span Optimal 

Figure 8: Correlation Coefficients (
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Figure 7: Make span Optimal Distribution Due to 10% Variability

Figure 8: Correlation Coefficients (Spearman Rank) 
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Due to 10% Variability  
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Figure 9: Change in Make span Mean 

Figure 10: Make span 
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Figure 9: Change in Make span Mean Across Range of Input Values

Figure 10: Make span Regression Coefficients 
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Range of Input Values 
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Figure 11: 

Figure (12) shows the resulting total penalties of optimal distribution due to 10% variability. While Figure (13) 

shows the inputs ranked by the effect on output mean. It is clear from the figure that Operation no.4 still has the greatest 

effect on the makespan. This is more clearly as well from figures from (14) to (16). Operation no.4 has a regression 

coefficient of 0.9 and 87.61% contribution to variance. It is noticed that Operation no. 12 come after it in the second rank 

with a great deviation while Operation no. 8 has a 

Figure 12: Total 
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Figure 11: Percentage Contribution to Make Span Variance

Figure (12) shows the resulting total penalties of optimal distribution due to 10% variability. While Figure (13) 

shows the inputs ranked by the effect on output mean. It is clear from the figure that Operation no.4 still has the greatest 

espan. This is more clearly as well from figures from (14) to (16). Operation no.4 has a regression 

coefficient of 0.9 and 87.61% contribution to variance. It is noticed that Operation no. 12 come after it in the second rank 

eration no. 8 has a slighter effect. 

Figure 12: Total Penalties Optimal Distribution due to 10% Variability
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Contribution to Make Span Variance 

Figure (12) shows the resulting total penalties of optimal distribution due to 10% variability. While Figure (13) 

shows the inputs ranked by the effect on output mean. It is clear from the figure that Operation no.4 still has the greatest 

espan. This is more clearly as well from figures from (14) to (16). Operation no.4 has a regression 

coefficient of 0.9 and 87.61% contribution to variance. It is noticed that Operation no. 12 come after it in the second rank 

 

Optimal Distribution due to 10% Variability  
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Figure 13: Correlation Coefficients (Spearman Rank)

Figure 14: Change in Total 

Figure 15: 
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Figure 13: Correlation Coefficients (Spearman Rank) 

Figure 14: Change in Total Penalties Mean across the Range of Input Values

Figure 15: Total Penalties Regression Coefficients 
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Mean across the Range of Input Values 
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Figure 16: Percentage 

Table 8summarizes the results of the effect of duration distributions times on the different objective functions.

Table 8: Effect of Duration Normal Di

 

Operation No. Regression 
Coefficient

4 0.9 
12 0.21 
8 0.10 
10 0.08 
6 -0.05 

 
It is noticed that the effect of changing the duration of operations to follow normal distribution differently affected 

the objective functions makespan and total penalty. Operation no.4 still have a  high 

penalties. 

Table 9: Results of the Penalty of the Non

M/J J1 J2 
M1 80 100 
M2 40 90 
M3 60 50 
M4 60 50 

 
Table 10: Penalties of Earliness, Tardiness and Single Penalty

Penalty 
Earliness Penalty per unit time 
Earliness Penalty (Storage cost) 
Tardiness Penalty per unit time 
Tardiness Penalty (Delay cost) 
Single Penalty for each delay 
No. of delays 
Single Penalties 
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Figure 16: Percentage Contribution to Total Penalties Variance

Table 8summarizes the results of the effect of duration distributions times on the different objective functions.

Table 8: Effect of Duration Normal Distribution on Both Different Functions

Objective Function 
Total Penalties 

Regression 
Coefficient 

Contribution Variance % Regression 
Coefficient

87.61 0.7 
4.08 - 
1.03 0.44 
0.54 - 
-0.24 - 

It is noticed that the effect of changing the duration of operations to follow normal distribution differently affected 

the objective functions makespan and total penalty. Operation no.4 still have a  high effect on both the makespan and total 

Table 9: Results of the Penalty of the Non-Utilized Capacity Cost

J3 Sum Idle Time Unit Idle Penalty
50 230 108.4 50 
25 155 161.2 5 
80 190 14.1 5 
50 160 187.812341 5 

Total Penalty 

Table 10: Penalties of Earliness, Tardiness and Single Penalty

J1 J2 
2 2 
0 4.4 

200 200 
7675.5 0 
2000 2000 

1 0 
2000 0 

Total 
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to Total Penalties Variance 

Table 8summarizes the results of the effect of duration distributions times on the different objective functions. 

stribution on Both Different Functions 

Make Span 
Regression 
Coefficient 

Contribution 
Variance % 

 59.119 
- 

 18.97 
- 
- 

It is noticed that the effect of changing the duration of operations to follow normal distribution differently affected 

effect on both the makespan and total 

Utilized Capacity Cost 

Unit Idle Penalty Penalty 
 5418.9 
 805.8 
 70.7 
 939.0 

7234 

Table 10: Penalties of Earliness, Tardiness and Single Penalty 

J3 Sum 
1 

 
3.8 8.2 
120 

 
0 7675.5 

1200 
 

0 
 

0 2000 
9683.7 
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Table 9 represents the results of the penalty of the non-utilized capacity cost while Table 10 represents the 

penalties of earliness, tardiness, and a single penalty. The comparison between the resultant values of both the 

deterministic and robust cases is shown in Table 11. 

Table 11: Comparison between Deterministic and Robust Results 

 Case 1 Case 2 
Makespan 350 347.8 
The penalty due to idle time 6275 7234.4 
Earliness, tardiness and single penalty 6000 9683.7 
Sum of Total Penalties 12275 16918.1 

 
It is clear from the table that the sum of total penalties increases considering uncertain durations. Besides both the 

idle time, total sum of earliness, tardiness and single penalties increases relative to the case of deterministic duration. The 

makespan is slightly affected. 

CONCLUSIONS 

The JSSP has been successfully solved to optimize the total penalty under the situation of the uncertainty of the 

processing times of all jobs. A comparison was done between the obtained results in different cases. Dealing with the 

problem of stochastic processing times is more practical. The penalties are important to be calculated besides the 

makespan. 

A developed JSS optimization model has been built using the Microsoft Excel spreadsheets and solved using 

@Risk solver.  

The model has been verified to be accurate and effective through the analysis of the obtained results.  

The following are some recommendations that can be considered for future research work: 

Researchers can tackle JSSP in multi-period instead of considering a single period only 

• Most problems of JSSP were addressed in the static environment. Efforts can be directed to solve a dynamic 

environment. 

• Studying the effect of material selection and design on the obtained schedule and showing how it can affect both 

operation times and the machine selection which in return affects both the sequence of operations and 

consequently the schedule. 

• Efforts can be devoted to solving the problem under various configurations such as common cycle scheduling 

problem CCSP and cyclic scheduling problem CSP 

• Unexpected disruptions can be studied to show their effects on the schedule. This gives the chance to handle 

practical cases in the industry. 

• Rescheduling is a rich field to do more researches in the future. 
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