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ABSTRACT

In this study, a penalty minimization job-shop sthi®g model under uncertainty is developed. Thealeho
considers a job-shop of J jobs and M machines. Eask has a random duration with a specific profigbdistribution.
Each job has a specific due date and the bulk genfait is not delivered on time. An additionalradty must be paid for
each time unit of delay.If any job is accompliskedly, it will cost holding expense¥he problem is to determine the
optimal start times of each task to minimize thpeeked penalties. A numerical problem has beenedoto
minimize both the makespan and total penalties reg¢ply and a comparison between results was done.
Analysis of the results prescribed that optimizpemalties is important to be taken into considematbesides

considering the uncertainty in JSSP.
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INTRODUCTION

Scheduling plays an essential role in productiostesys. This paper considers job-shop schedulinglgmo
(JSSP) where it is the most general and practieahine environment in which several machines eaistl each job has
its own pre-determined route to follow. A job shieplefined as any system that processes sevekal fiasthe number of
jobs on several machines. Reaching the optimatisalis not an easy task. Till now, no known altoms guarantee to
give an optimal solution and run in polynomial tinmensequently optimizing methods such as brandtbannd, dynamic
programming and mathematical models may be usedrf@ll size problems. So, efforts are diverted e¢aristic and

metaheuristic techniques and algorithms optingéxih near-optimal solutions.

Most of the researchers aimed at optimizing timeeblaobjectives rather than the cost-based objactive
Moreover, they tackled the problem with the assimnpbf constant job operation times while othersigider the
randomness of time. Metaheuristic approaches ssiaenetic algorithm, simulating annealing SA, bemmy BC, ant
colony AC, particle swarm optimization PSO, cuckast search CS and migrating bird’s optimization®18nd others
are presented as solution approaches to JSSP.@aiswet al. [1] summarized the well-known objeetfunctions of JSSP

and most of the Al used solution strategies toestihe problem.
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S.Singh et al. [2] proposed a hybrid algorithm gstnckoo search optimization CSO with enhancememtrae

to solve the problem with an objective of minimgimakespan.

Bing Wang et al. [3], established a hybrid locarsé robust optimization model combining the tadchhique
and the simulated-annealing search. They considareertain processing times with makespan as ameahce criterion.
They described the uncertain processing times Isgrelie scenarios. The set of bad scenarios hedymrst the

uncertainty of achieving substandard performanossng these bad scenarios.

The mission of the scheduling process is to optimallocate the suitable machine to perform theunegl jobs
over a period to achieve the business goals. Therefany efforts have been performed to solve mpsmal JSSP, as
most of the researches aimed at minimizing the masi completion time. Number of methods have beerldped to
solve JSSP; Tabu-Search[4], Simulated Annealingfgnetic Algorithms[6], Particle Swarm Optimizatipn, 8], Ant
Colony Optimization [9, 10], differential evoluticgorithm [11], Memetic Algorithm [12], MathemagicProgramming
[13, 14] and Goal Programming [15].Some researcimansaged the problem under uncertainty analysisulSarker et al.
[16] considered the disruption problem of receivifferent job orders from customers and facingyfient machine

breakdowns.

Tavakkoli-Moghaddam et al. [17] considered JSS watidom operations, where the time difference betvtbe
delivery and completion of jobs as well as relatgerational or idle cost of machines that must beimized. Some
authors have developed exact and heuristic algosittor JSSP with the makespan or mean flow tinterioh subject to

random processing times [18-20].

In recent literature, two new criteria have beeaught to the attention of researchers for theirsaaration:
robustness and stability [21].Z. Lu et al. [22] ezk$ed the problem of finding a robust and statiedule for a single
machine with availability constraints.

Chan et al. [23, 24]considered in their model,rfigimization of late cost, inventory cost, penaltst, setup cost
besidesmakespan. While Huang [25] considered minimizing thaterial processing cost, setup time cost anentovy
cost as their objective function.Varthanan et @b][developed an efficient particle swarm algorithon solve both
deterministic and stochastic problems and miningizine total costD. Golenko et al. [27] developed an optimization

model to solve JSSP with random durations and waramst penalties and expenses.

From the aforementioned, most of the developedistgrs in JSSP targeted the problem of time to ming
makespan. Less work was done to consider the roleost on determining such schedules. Moreover,tmbghe
researches believe job processing to be deteriminBbme of the researches consider uncertain gsowg times. Job
operations may have a random duration with a pritibadistribution.

This paper introduces a penalty minimization JSSlehander uncertainty. This model is developed ioimize
the cost of untimed job penalty and the non-utilizapacity cost. The model considers the job titodse random with a
certain probability distribution. The aim is to detine the optimal start times of each task to mipé the expected total
penalties. The incurred costs in this model arediay penalties expressing the tardiness, stozagerepresenting the

earliness, and the non-utilized capacity cost.
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Problem Description and Assumptions

25

Besides the growing trend towards the applicatibrGé to JSSP, researchers are looking for usingpEm

software to aid them to obtain good solutions Iova time. The Microsoft Excel spreadsheet and attiado provide the

GA called @RiskOptimizer are used in the domairatfeduling problems.

The authors decided to get benefits from this athgeof using @RiskOptimizer. This research usigliceosoft

Excel spreadsheet-based commercial genetic algofvolver with solver @RiskOptimizer to build th8S model.

The Following Assumptions are Considered in the Moel

The processing times are uncertain;

Each job has its own due date;

Each job will visit the same machine not more thaa time;
All jobs and machines are ready at time zero;

Each machine can process only one job at a time;

Recirculation is not allowed:;

Notation and Model Formulation

Sets

J: Set of jobs

M: Set of machines

Parameters

Pii: Processing time for job j on m/c i

PM;: The mean value of the processing time for job jroc i
PS: The standard deviation of the processing timgdbij on m/c i
D;: Due date of job j,j=1, 2, ..., J

SG: The storage expenses of job j per unit time

DC;: The penalty of job j delay per unit time

PG: The penalty of job j delay

MIP;: The penalty of machine i idling per unit time

SEQ: Processing sequence array

NUMT: Number of machines (tasks) for each job

NUMJ: Number of jobs per machine J

DISJ: Disjunction array

www.iaset.us
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Decision Variables
S;i: Starting time of job j on machine i,
Fji: Finishing time of job j on machine i,
Cj: Completion time of job j,
Ej: Earliness of job j = (Dj - Cj) if Dj>Cj, and 6therwise,

Tj: Tardiness of job j = (Cj - Dj) if Cj>Dj, and 6therwise,

MITi: Idle time of machine i = MAX(Fji) — Z Pji

jEN
SPj: Single penaltyfornotaccomplishingjobjontimég@paidonce)
TPj: Tardiness penalty of job j.
EPj: Earliness penalty of job j.
TJj: Binary variable = 1 if Tj> 0, and O otherwise,
Objective Functions

Total penalty = Non-utilised capacity penalty + &epenalty (Tardiness) + Single payment penaltydifi@ss) +

Storage penalty (Earliness).

The objective of total penalties is given in Eqoati.

Total Penalty = Y;cp(MIT; * MIP) + Xjen(Tj * TP) + Xjen(T]; * SB) + Xjen(Ej x W) x EP) (1)
Constraints

(Shi — Snj) = Phj — M Yy, Vi,j € N,Vh € M 2)

(Snj = Sni) = Phi —M (1 — Yy), Vi,j EN,Yhe M (3)
Conjunction Constraints

Yiem(Sseqa + Pseqan) = Ziem Sseqqi+), V) EN,VIEM —1 4)
Computational Results and Analysis

In this section, the results of applying the praabsnodel are introduced and analyzed. The modebbas

solved using @RiskOptimizer solver.

The model accuracy and capability are verified tigto solving a numerical problem. The processingiseces
of three jobs on four machines are shown in tableht duration matrix and the due date of eachajgbshown in table 2

and 3 respectively.
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Table 1: Job Sequence

JI | 3|24 1
J2 | 3| 2] 1] 4
J3 11 |3]4] 2

Table 2: Duration Matrix

M | J1 | J2 | J3

M1 | 80 | 100 | 50
M2 | 40 90 25
M3 | 60 50 80
M4 | 60 50 50

Table 3: Due Date

Job 1 2 3
Due Date | 300 | 350 | 320

The optimization process starts with an accuradblpm modelling. For any given set of decision ealucalled
adjustable cell values, the model evaluates anctige function, which required to be optimized. @KDptimizer
searches for the solution, the objective functioroviles feedback, teling how good or bad solutign
@RiskOptimizercontinues to search for better sohgi until no considerable improvements can be obthiin a

predefined number of trials.

The problem is solved twice with the objective ofnimizing the total penalty. In the first, consider
deterministic duration processing times after that durations are assumed to follow normal distiisuN (u, o) with

meanu and standard deviatian The ratio between the standard deviation and riselamown as variability.
Case 1: Output of the Model with Deterministic Durdion

Table 4 to Table 7 illustrate the results of thedelowith deterministic processing durations. Thet uie
penalties are assumed to be 50, 5, 5 and 5 $/théon each machine respectively. The resultetbial penalty due to the
shortage, delay and a single penalty is equal @) 6P while the penalties due to idle time or noilizetd capacity of

machines are 6275%. Consequently, the objectivetiumof the total penalty is equal to their surdg@15$

Table 4: The Start and Finish Times of Each Operatin

OperationNo. 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

Job ID 1 1 1 1 2 2 2 2 3 3 3 3
Machine Required | 3 2 4 1 3 2 1 4 1 3 4 2
Duration Time 60 40 60| 80| 50 90 100 50 50 80 50 25
Start Time 50 | 140 | 180] 240 O] 50 140 300 19 100 245 295
Finish Time 110| 180 | 240, 320 50 14p 240 350 H9 190 295 B20

Table 5: Due Date, Finish, Earliness and Tardiness

J1 J2 J3
Due Date 300 | 350| 320
Finish Time | 320 | 350| 320
Earliness 0 0 0
Tardiness 20 0 0

www.iaset.us editor @ aset.us
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Table 6: Earliness, Tardiness and Single PaymeiPenalties

Earliness Penalty perUnit of Time 2 2 1 0] 0
Earliness Penalty (StorageCost) 0 0 0 0] 0 0 |
Tardiness Penalty perUnit of Time 200 | 200| 120 O] O
Tardiness Penalty (DelayCost) 4000 0 0 0| 0 | 4000|
Single Penalty forEach Delay 2000 | 2000 1200 O O
No. of Delays 1 0 0 0| 0
Single Penalties 2000 0 0 0| O

Table 7: Idle Time Penalty

100 230 320 50 4500
155 320 165 5 825

M3 60 50 80 190 190 0 5 0
160 350 190 5 950

Case 2: Output of the Model with Stochastic Duratia

This case studies the effect of changing the dumabf operations into robust on both the makespan arad
penalty. As mentioned before, the duration of op@na is assumed to follow the normal distributiigures (-6) show
the duration distribution of the operations withe@n time, Standard deviatic of (40, 4), (50, 5), (60, 6), (80, 8), (90,
and (100,10). It is noticed that the variability this case, is equal to 1C

Operation No. 2

Comparison with Normal(40,4)
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Figure 1: Duration Distribution of Operation No. 2
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Operation No. 5
Comparison with Normal(50,5)
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Figure 2: Duration Distribution of Operation No. 5
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Figure 3: Duration Distribution of Operation No. 1

Operation No. 4
Comparison with Normal(80,8)
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Figure 4: Duration Distribution of Operation No. 4
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Operation No. 6

Comparison with Normal(90,9)
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Figure 5: Duration Distribution of Operation No. 6

Operation No. 7
Comparison with Normal(100,10)
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Figure 6: Duration Distribution of Operation No. 7

Figure 7 shows the resulting makespan optimalibigion due o 10% variability. While Figure 8 shows t
inputs ranked by the effect on the output. It isaclfromFigure 7that Operation no. 4 has the greatest effect ot
makespan. This is more clearly as well from figy@-11). Operation no.4 has a regression coefficiefit bfand 59.115¢

contribution to variance. It is noticed that Op&matNo. 8 comes on the seccrank to Operation no.
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Figure 7: Make span OptimalDistribution Due to 10% Variability
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Figure 11: PercentageContribution to Make Span Variance

Figure (12) shows the resulting total penaltie®ptfimal distribution due to 10% variability. Whikgure (13)
shows the inputs ranked by the effect on outputnmkiads clear from the figure that Operation netdl has the greate
effect on the madspan. This is more clearly as well from figuresirir(14) to (16). Operation no.4 has a regres
coefficient of 0.9 and 87.61% contribution to vada. It is noticed that Operation no. 12 come after the second ran

with a great deviation while @pation no. 8 hasslighter effect.
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Figure 12: Total PenaltiesOptimal Distribution due to 10% Variability
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Total Penalities
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Figure 13: Correlation Coefficients (Spearman Rank
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Table 8summarizes the results of the effect oftthmalistributions times on the different objectiumctions

Table 8: Effect of Duration Normal Distribution on Both Different Functions

87.61

59.119
0 21 4.08 -
8 0.10 1.03 0.44 18 97
10 0.08 0.54 - -
6 -0.05 -0.24 - -

It is noticed that the effect of changing the diarabf operations to follow normal distribution fdifently affectec

the objective functions makespan and total pen@lperation no.4 still have a hieffect on both the makespan and ti
penalties.

Table 9: Results of the Penalty of the Nc-Utilized Capacity Cos!

100 230 108.4 50 5418.9

M2 40 90 25 155 161.2 5 805.8
M3 60 50 80 190 141 5 70.7
160 187.812341 5 939.0

Table 10: Penalties of Earliness, Tardiness and Sjie Penalty

Earliness Penalty per unit time

Earliness Penalty (Storage cost) 0 4.4 3.8 8.2
Tardiness Penalty per unit time 200 200 120

Tardiness Penalty (Delay cost) 7675.5 0 0 7675.5
Single Penalty for each delay 2000 2000 1200

No. of delays 1 O O

Single Penalties 2000 2000
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Table 9 represents the results of the penalty eftbn-utilized capacity cost while Table 10 repnsehe
penalties of earliness, tardiness, and a singlealpenThe comparison between the resultant valuedath the

deterministic and robust cases is shown in Table 11

Table 11: Comparison between Deterministic and Rolst Results

Casel| Case?2?
Makespan 350 347.8
The penalty due to idle time 6275 7234.4
Earliness, tardiness and single penalty| 6000 9683.7
Sum of Total Penalties 12275 | 16918.1

It is clear from the table that the sum of totahgiéies increases considering uncertain duratiBasides both the
idle time, total sum of earliness, tardiness andlsi penalties increases relative to the case tefiménistic duration. The

makespan is slightly affected.
CONCLUSIONS

The JSSP has been successfully solved to optieéotal penalty under the situation of the unéetyaof the
processing times of all jobs. A comparison was dbegveen the obtained results in different case=liBg with the
problem of stochastic processing times is more tipac The penalties are important to be calculabedides the
makespan.

A developed JSS optimization model has been bugiltguthe Microsoft Excel spreadsheets and solvéagus
@Risk solver.

The model has been verified to be accurate andteféethrough the analysis of the obtained results.
The following are some recommendations that cacobsidered for future research work:
Researchers can tackle JSSP in multi-period insi€adnsidering a single period only

 Most problems of JSSP were addressed in the statitonment. Efforts can be directed to solve aadyic

environment.

» Studying the effect of material selection and desig the obtained schedule and showing how it éctaboth
operation times and the machine selection whichreturn affects both the sequence of operations and

consequently the schedule.

» Efforts can be devoted to solving the problem undeious configurations such as common cycle sdivegiu

problem CCSP and cyclic scheduling problem CSP

» Unexpected disruptions can be studied to show #hi#ércts on the schedule. This gives the chandeatalle

practical cases in the industry.

» Rescheduling is a rich field to do more researahéise future.
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